Neyman-Pearson Lemma

Lemma 1.1 Let X be a random variable with unknown distribution, either $f_{0}(x)$ or $f_{1}(x)$, and consider the test situation

$$
\begin{equation*}
H_{0}: X \sim f_{0}(x) \text { versus } H_{1}: X \sim f_{1}(x) \tag{1}
\end{equation*}
$$

(simple versus simple). To test H_{0} versus H_{1}, the most powerful size α test is

$$
\varphi(x)=\left\{\begin{array}{cc}
1 & x \ni f_{0}(x) / f_{1}(x) \tag{2}
\end{array}<k_{\alpha} .\right.
$$

where k_{α} and γ_{α} are chosen such that $\mathrm{E}_{f_{0}}(\varphi(x))=\alpha$.
This lemma is the basis for future testing where we move on to composite hypotheses.
Proof 1.1 Consider two tests, φ and φ^{*}. The difference of the powers of these tests is

$$
\begin{align*}
\left(1-\beta_{\varphi}\right)-\left(1-\beta_{\varphi^{*}}\right)= & \mathrm{E}_{f_{1}}(\varphi)-\mathrm{E}_{f_{1}}\left(\varphi^{*}\right) \tag{3}\\
= & \mathrm{E}_{f_{1}}\left(\varphi-\varphi^{*}\right) \tag{4}\\
= & \int_{\mathfrak{x}}\left(\varphi(x)-\varphi^{*}(x)\right) f_{1}(x) d x \tag{5}\\
= & \int_{x \ni f_{0} / f_{1}<k}\left(\varphi(x)-\varphi^{*}(x)\right) f_{1}(x) d x+\int_{x \ni f_{0} / f_{1}=k}\left(\varphi(x)-\varphi^{*}(x)\right) f_{1}(x) d x \\
& +\int_{x \ni f_{0} / f_{1}>k}\left(\varphi(x)-\varphi^{*}(x)\right) f_{1}(x) d x \tag{6}\\
\geq & \frac{1}{k} \int_{x \ni f_{0} / f_{1}<k}\left(\varphi(x)-\varphi^{*}(x)\right) f_{0}(x) d x+\frac{1}{k} \int_{x \ni f_{0} / f_{1}=k}\left(\varphi(x)-\varphi^{*}(x)\right) f_{0}(x) d x \\
& +\frac{1}{k} \int_{x \ni f_{0} / f_{1}>k}\left(\varphi(x)-\varphi^{*}(x)\right) f_{0}(x) d x \tag{7}\\
\geq & \frac{1}{k_{\alpha}} \mathrm{E}_{f_{0}}\left(\varphi(X)-\varphi^{*}(X)\right) \tag{8}\\
\geq & 0 \tag{9}
\end{align*}
$$

Thus, the power of φ is no less than the power of φ^{*}.
The transition between alternative and null hypotheses in equations 6 and 7 is due to the fact that in the first integral we are in the rejection region so $\varphi-\varphi^{*}=1-\varphi^{*} \geq 0$ and $f_{0} / f_{1}<k$ means that $f_{1} \geq f_{0} / k$. Similarly, in the middle integral we are in the randomization region so $f_{0} / f_{1}=k$ means that $f_{1}=f_{0} / k$. Finally, for the last integral we are in the "acceptance" region so $\varphi-\varphi^{*}=0-\varphi^{*} \leq 0$ and $f_{0} / f_{1}>k$ means that $f_{1} \geq f_{0} / k$.

Equation 9 follows from 8 follows since $k_{\alpha} \geq 0$ and under H_{0} we have that $\mathrm{E}_{0}(\varphi(X)) \geq$ $\mathrm{E}_{0}\left(\varphi^{*}(X)\right)$ or $\alpha \geq \alpha^{*}$ by size.

Example 1.1 Let $X_{i} \stackrel{i i d}{\sim} B(1, p)$. To test

$$
H_{0}: p=0.5 \text { versus } H_{1}: p=0.75
$$

we look at

$$
\begin{align*}
\frac{f_{0}(x)}{f_{1}(x)} & =\frac{1^{\sum x_{i}} 1^{5-\sum x_{i}} / 2^{5}}{3^{\sum x_{i}} 1^{5-\sum x_{i}} / 4^{5}} \tag{10}\\
& =\frac{2^{5}}{3^{\sum x_{i}}} \tag{11}
\end{align*}
$$

To make $\alpha=0.5$ we note that

$$
\begin{equation*}
\frac{f_{0}(x)}{f_{1}(x)}=\frac{2^{5}}{3^{\sum x_{i}}} \tag{12}
\end{equation*}
$$

is decreasing in $\sum x_{i}$. So we will reject H_{0} if $T=\sum X_{i}$ is too large. Now note that $T=\sum X_{i} \sim B(5, p)$ so that under the null hypothesis

$$
\begin{equation*}
f_{0}(t)=\binom{5}{t}\left(\frac{1}{2}\right)^{t}\left(\frac{1}{2}\right)^{5-t} \tag{13}
\end{equation*}
$$

Thus

$$
\begin{array}{c|cccccc}
t=\sum x_{i} & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline f_{0}(t) & 0.0313 & 0.1563 & 0.3125 & 0.3125 & 0.1563 & 0.0313
\end{array}
$$

If we reject for $\sum x_{i}=5\left(f_{0} / f_{1}=0.1317\right)$ then we reject with probability 0.0313 under H_{0} (not enough). Using $\sum x_{i} \geq 4\left(f_{0} / f_{1}=.3951\right)$ we reject with probability $0.1563+0.0313=$ 0.1876 (too much). So, we should reject if $\sum x_{i}=5$ and randomize for $\sum x_{i}=4$. To get exact size α we need γ_{α}.

Note that

$$
\begin{align*}
\mathrm{E}_{1 / 2}(\varphi(X)) & =\mathrm{P}_{1 / 2}\left[\text { reject } H_{0}\right] \tag{14}\\
& =\gamma \mathrm{P}_{1 / 2}\left(\sum X_{i}=4\right)+\mathrm{P}_{1 / 2}\left(\sum X_{i}=5\right) \tag{15}\\
& =\gamma 0.1563+0.0313 \tag{16}\\
& =0.05 \tag{17}
\end{align*}
$$

Solving for γ we obtain $\gamma=0.1196$ and our level $\alpha=0.05$ test is

$$
\varphi(\mathbf{X})= \begin{cases}1 & \sum X_{i}=5 \tag{18}\\ 0.1196 & \sum X_{i}=4 \\ 0 & \text { else }\end{cases}
$$

Finally, note that if $p=\frac{3}{4}$, the power of this test is

$$
\begin{align*}
1-\beta & =\left(\frac{3}{4}\right)^{5}+\gamma\binom{5}{4}\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right) \tag{19}\\
& =0.2373+\gamma 0.3955 \tag{20}\\
& =0.2846 \tag{21}
\end{align*}
$$

which is pretty low. We might want to use a few more observations.

